The perspective of Ophthalmologists in India on Artificial Intelligence supported Diabetic Retinopathy screening by non-ophthalmologists

Prathibha Obed Anika Amritanand, Soujanya. K, Padma Paul, GVS Murthy

Background

- Escalating prevalence of diabetic retinopathy (DR) globally.
- India highest magnitude of people living with diabetes mellitus (PwDM) (1-3)
- Shortage of Ophthalmologists and healthcare workers (4)
- Demand for diagnostic solutions is critical
- Artificial Intelligence (AI) demonstrated diagnostic accuracy in DR screening, making it a potential solution (5-7)
- Non-ophthalmologists' healthcare professionals shown proficiency in DR screening (8 -11) and cost effective (12,13)
- Ophthalmologists' acceptance of non-ophthalmologists using AI-based tools for DR screening.

Aim

To explore the role of AI supported DR screening by non-ophthalmologists as perceived by Ophthalmologists in India

Objectives To assess the To explore the Amongst the DR perceived or acceptance and ophthalmologists, to To assess **Knowledge** experienced **benefits** readiness of on AI supported DR explore the role of and barriers of using **Ophthalmologists** to non-ophthalmologists screening by non-AI supported DR use AI supported DR ophthalmologists in screening for DR screening by nonscreening by nonusing AI-based tools ophthalmologists Ophthalmologists

Materials & Methods

Setting:

- All eye care facilities
- Public or government hospitals
- Private or Non-governmental hospitals
- Two districts in India:
- Dakshina Kannada, Karnataka
- U Vellore, Tamil Nadu

Location of these districts in Karnataka and Tamil Nadu, India

Purposive sample

Study design, Data collection: Mixed Method approach

Stratified Random sample (Computer-generated) All eligible Ophthalmologists in two districts

Acceptance & Readiness of Ophthalmologists

Knowledge details	Acceptance	Willing to share tasks	Readiness to integrate	
Knowledge details	AOR (95% CI), P value			
AI in DR screening	12.47(1.39 to112.48)	21.26 (2.29 to 197.65)	8.40 (1.49 to 47.36)	
	(p = 0.025)	(p = 0.007)	(p=0.016)	
Non-ophthalmologists in DR screening	8.41(2.02 to 35.08)	9.81 (2.47 to 38.94)	6.62 (1.85 to 23.74)	
	(p = 0.003)	(p = 0.001)	(p = 0.004)	

Role of Non-ophthalmologists (Thematic analysis)

Ethical Approvals: London School of Hygiene & Tropical Medicine, UK; Christian Medical College, Vellore; Yenepoya Deemed (to be) Medical University, Mangalore

education

Key Findings

- > Majority (96.8%) of Ophthalmologists regularly screen for DR in clinical practice
- Benefits: increased accessibility, efficiency
- **Barriers**: lack of training, legal/ ethical concerns
- Roles for non-ophthalmologist: preliminary DR screening, follow-up care, public health education, and screening in rural/ remote areas
- Awareness significantly impacts acceptance, willingness to share tasks and integrate AIsupported DR screening by non-ophthalmologists

Conclusions

- □ Non-ophthalmologists play a key role in expanding DR screening, particularly in underserved areas.
- □ AI-assisted DR screening by non-ophthalmologists enhances early detection and efficiency.
- Ophthalmologists' engagement is critical.
- Raising awareness and implementing clear policies will accelerate integration of AI-supported DR screening by non-ophthalmologists.

Recommendations

- Increase awareness among ophthalmologists about AI-assisted DR screening and role of nonophthalmologists.
- Develop clear protocols for AI-supported DR screening by non-ophthalmologists.
- Support research to enhance AI algorithm accuracy and reliability.

-			(n=31)	
DR screening in (years)	Mean \pm SD	12.68 ± 8.72	13.71 ± 8.61	11.69 ± 8.84
	Median	10	14	9.5
Number of DR cases screened/ week	Mean \pm SD	26.32 ± 35.08	19.19 ± 19.75	33.22 ± 44.53
	Median	20	10	20
DR Ophthalmologists	DR screening in (years)	Mean ± SD Median	8.83 ± 4.28 9.5	
	Number of DR cases screened/ week	Mean ± SD Median	35.83 ± 27.54 30	
Knowledge on A	AI in DR screenin	g	·	
Knowledge details	Overall (N = 63)			
AI in DR screening	82.5%			
Non-ophthalmologists in	69.8%			
AI assisted DR screening	46%			
Confidence in Diagnosti	25%			

Train non-ophthalmologists in AI-assisted DR screening.

Acknowledgements

Public Health Eye Care Team (LSHTM), Outreach Team, Christian Medical College, Vellore, India,

Participant Ophthalmologists

Funding : Trust Fund Scholarship, LSHTM

Bibliography

1. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045. Ophthalmology [Internet]. 2021 Nov [cited 2024 Feb 2];128(11):1580–91 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0161642021003213 2. India diabetes report 2000 — 2045 [Internet]. [cited 2024 Feb 2]. Available from: https://www.diabetesatlas.org/data/ 3. Brar AS, Sahoo J, Behera UC, Jonas JB, Sivaprasad S, Das T. Prevalence of diabetic retinopathy in urban and rural India: A systematic review and meta-analysis. Indian J Ophthalmol [Internet]. 2022 Jun [cited 2024 Feb 22];70(6):1945–55. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359280/ 4. Organization WH. The World Health Report 2006: Working Together for Health. World Health Organization; 2006. 237 p. 5. Ruamviboonsuk P, Tiwari R, Sayres R, Nganthavee V, Hemarat K, Kongprayoon A, et al. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Lancet Digit Health [Internet]. 2022 Apr 1 [cited 2024 Feb 2];4(4):e235–44. Available from: https://www.sciencedirect.com/science/article/pii/S2589750022000176 6. Korn Malerbi F, Barreto Melo G. Feasibility of screening for diabetic retinopathy using artificial intelligence, Brazil. Bull World Health Organ [Internet]. 2022 Oct [cited 2024 Feb 2];100(10):643–7. Available from: https://search.ebscohost.com/login.aspx?direct=true&AuthType=cookie,ip,shib&db=ccm&AN=159512781&site=ehost-live 7. Tufail A, Rudisill C, Egan C, Kapetanakis VV, Salas-Vega S, Owen CG, et al. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders. Ophthalmology [Internet]. 2017 Mar 1 [cited 2024 Feb 2];124(3):343–51. Available from: https://www.sciencedirect.com/science/article/pii/S0161642016320188 8. Verma L, Prakash G, Tewari HK, Gupta SK, Murthy GVS, Sharma N. Screening for diabetic retinopathy by non-ophthalmologists: an effective public health tool. Acta Ophthalmol Scand [Internet]. 2003 [cited 2024 Feb 21];81(4):373–7. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1600-0420.2003.00004.x 9. Rodríguez Villa S, Suárez Muñiz MT, De Dios del Valle R, Alonso Álvarez C. Retinopathy diabetic screening by non-mydriatic retinography: Concordance between primary care physicians, nurses and ophthalmologists. Enferm Clínica Engl Ed [Internet]. 2018 Jan 1 [cited 2024 Feb 21];28(1):44–8. Available from: https://www.sciencedirect.com/science/article/pii/S2445147917300814 10.Accuracy of diabetic retinopathy screening by trained non-physician graders using non-mydriatic fundus camera | SMJ [Internet]. [cited 2024 Feb 21]. Available from: http://www.smj.org.sg/article/accuracy-diabeticretinopathy-screening-trained-non-physician-graders-using-non-mydriatic 11.Piyasena MMPN, Yip JLY, MacLeod D, Kim M, Gudlavalleti VSM. Diagnostic test accuracy of diabetic retinopathy screening by physician graders using a hand-held non-mydriatic retinal camera at a tertiary level medical clinic. BMC Ophthalmol [Internet]. 2019 Apr 8 [cited 2024 Feb 21];19(1):89. Available from: https://doi.org/10.1186/s12886-019-1092-3 12.Das T, Takkar B, Sivaprasad S, Thanksphon T, Taylor H, Wiedemann P, et al. Recently updated global diabetic retinopathy screening guidelines: commonalities, differences, and future possibilities. Eye [Internet]. 2021 Oct [cited 2024 Feb 21];35(10):2685–98. Available from: https://www.nature.com/articles/s41433-021-01572-4 13. Bascaran C, Mwangi N, D'Esposito F, Gordon I, Ulloa JAL, Mdala S, et al. Effectiveness of task-shifting for the detection of diabetic retinopathy in low- and middle-income countries: a rapid review protocol. Syst Rev [Internet]. 2021 Jan 4 [cited 2024 Feb 21];10:4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780379/